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SUMMARY

In this study a parallel program to analyze transient

finite element problems was written and implemented on a

system of transputer processors. The program uses the

explicit time integration algorithm which eliminates the need

for equation solving making it more suitable for parallel

computations. An interprocessor communication scheme was

developed for arbitrary two-dimensional grid processor

configurations. Several 3-D problems were analyzed on a

system with a small number of processors.
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1.0 INTRODUCTION

Today computers are widely used in the engineering field

for the analysis of complex problems and to aid in the design

of new components. Despite the impressive speed of the

current generation of computers, there are many problems such

as those involving three-dimensional analysis or multi-

disciplinary optimization for which even the speed of today's

supercomputers is not sufficient. Also, the solution time for

many large scale problems needs to be greatly reduced before

they can be effectively incorporated into the engineering

design process. In an attempt to achieve a major increase in

speed of computers, attention has focused on the development

of parallel processing computers.

With parallel computers several processing units are

connected together with the idea of subdividing a given

problem into separate tasks that can be performed

independently on the different processors. Theoretically,

this approach gives a decrease in computation time over a

traditional sequential computer which performs all the tasks

in a sequential fashion.

Here the application of parallel computations to the

analysis of transient finite element problems will be

investigated. Transient finite element problems are among the

most computationa!ly intensive because the time history of

interest must be divided into small steps and the solution to
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the problem must be computed progressively at each successive

step in time. These types of problems arise in the modelling

of automobile crashworthiness, nuclear accidents and fluid-

structure interaction in liquid storage tanks and generally

involve large three-dimensional meshes and nonlinear

deformations and material behavior.

The purpose of this study was to implement a three-

dimensional transient finite element program on a system of

transputer processors. A two-dimensional grid transputer

processor configuration was chosen as the most appropriate for

the finite element problems of interest in this study. In

conjunction with the finite element program an interprocessor

communication algorithm was developed that can accommodate any

number of processors in an arbitrary grid configuration and

can adapt the distance allowable communication to suit

different problems. Some simple test problems of various

sizes were evaluated on a four processor transputer system to

study the effects of communication time on the efficiency of

the parallel computation.

f*



2.0 GOVZRNING EQUATION
o"

The governing finite element equations for structural

dynamics problems can be written in the form

M _ + _ = Z (2-i)

where

- external force vector

- internal force vector

- mass matrix

- nodal acceleration vector

For linear systems the internal force vector can be expressed

by the following formula

f = _ d (2-2)

here

_K - structure stiffness matrix

d - nodal displacement vector

and consequently equation (2-1) can be rewritten as

M a_ + _K d = £ (2-3)

The initial conditions for the above equation are given by

d o = d(t=0) (2-4a)

v_° = v(t=0) (2-4b)

where v is the vector of nodal velocity. Thus, the initial

value problem consists of finding d(t) satisfying equations

(2-3) and (2-4) for t>0.

Often it is necessary to analyze free vibrations of a

structure in which case the vector of nodal displacement at



t=O is assumed known and F=O and v°=O.

The derivation of these governing equations can be found

in many books on the finite element method (1'2)'.

"Parenthetical references pLaced superior to the tine of the tex_ refer to the b{btiography.



3.0 NUMERICAL INTEGRATION ALGORITIIM

In this section the procedures used to solve the initial

value problem will be presented. The most general method of

solution is referred to as direct integration and involves

dividing the time period of interest into steps and

progressively computing the solution at each step in time.

Perhaps the most popular direct integration method is the

Newmark-Beta method (3'_) and is given by

x _'_ =x n * A c [(l-y) a "_* 7 g'_'_] (3-1)

1

_'_ = d= * 4:x =- (_=)= [(_ - _) an ÷ _a _'_] (3-2)

where _g is the time step and gamma and beta are parameters

that affect the stability and accuracy of the method and have

the range 0< _ <1/2, 0< 7 <i. The superscript notation is

used to indicate the time, for example d" stands for _(n_t).

The most widely used variations of the Newmark-Beta formula

corresponding to different combinations of 7 and B are

given in the Table i. ,7 The .various types of Newmark

integration can be classified into two general categories:

implicit and explicit depending on whether it is necessary to

solve a system of linear equations to compute the updated

values of the solution.

The first two methods in the table, the trapezoidal
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method and the central difference method, are the most

frequently used. The trapezoidal rule has been shown to be

unconditionally stable in that convergence can be achieved

with any time step, however, the accuracy of the method can be

poor if too large a time step is used. The disadvantage of

this method is that it is implicit and a system of equations

needs to be solved in order to compute the next value of

displacement, d_I. Consequently, this method is somewhat more

difficult to implement in a parallel computation. A flow

chart for this method is given in Table 2.

With 7 = 1/2 and B E 0 the integration formula is called

the central difference method and is an explicit method. This

is because there is no need for any equation solving, provided

that the mass matrix is lumped (diagonal). This method is

particularly well suited for parallel computing because the

displacements and velocities can be updated on different

processors and only the displacements, used to compute the

internal forces, need to be exchange after each time step. The

disadvantage of this method is that it is only conditionally

stable and the error grows exponentially in time and are

meaningless if a certain critical time step is exceeded Cs).

The restriction on the time step is given by

2
_ _ -- (3-3)

_m_Lx

where _=ax is the maximum frequency computed from the



Table I.

Numerical integration algorithms

Central difference I/z 0

Trapezoidal rule I/2 I/4

Linear acceleration I/2 i/6

Two step backward

difference

11z 112



generalized eigenvalue problem

XX = _2 _X (3-4)

However, it is more convenient to use more conservative

condition

ac < _____2
_:,,_ (3-s)

where _ is the maximum value of all the element

frequencies. In this case the frequencies can be computed

from the much smaller element eigenvalue problem

2
_X = _, _eZ (3-6)

and for many elements simple closed form solutions can be

found for this problem. The flow chart for the central

difference method is given in Table 3.



Table 2.

Flow chart for the trapezoidal method.

Given initial conditions: d o, v ° for t=0.

i] Compute K ,M and 5 "I.

2] Compute acceleration vector _a°

a ° = Z'_ (_F° - _K do)

3] LOOP n=0 FOR number time steps

a ] compute

_K = M + S A=z K

b] compute _

_I = S Ar 2 E_I + M [ dn + A_ v n + Ac2(_-S)a_ "]

C] compute _-I

d] compute d _I

e] compute a _I

a _I = M "I (Z_I - _K _d_I)

f] compute v _I

v_ = v n + Ac [(i- y ) a" + y aM_]

g] if n = number of time step then terminate,

otherwise n=n+l and GO TO a].



Table 3.

Flow chart for the central difference method

Given initial conditions: d °, M ° for t=0.

l] Compute mass matrix M and its inverse Z-I, and stiffness

matrix K

2] Compute acceleration

_o = _-,(Fo _ E d °)

3] LOOP n=0 FOR number of time steps

a] compute external force vector in

b] update displacements

.d_n'_ = d n + a;v_ '_ + (_,cz/2) a _

C] compute acceleration

a _I = _'I(Z_I - E d_1)

d] update velocities

_v_1 = X" + (_=/2)(!" + a _I)

e] if n = number of time steps then terminate,

otherwise n = n+l and GO TO a].

i0



4.0 PARALLEL COMPUTATIONS

The development of finite element programs for parallel

computers depends strongly on the type of machine that is to

be used. Parallel processing computers are usually classified

according to number of processors in the system or by the type

of memory that is accessible to the processors. In the first

case parallel computers are usually termed fine grained if

there are many processors in the system, which may be as many

as 64,000, or coarse grained if the system is composed of

relatively few, approximately 5 to 20, large processors.

Also parallel computers can be differentiated by the

architecture of the system memory. With shared memory

architectures all processors have access to a common global

memory while with distributed memory systems each processor

has its own local memory and information exchange takes place

through interprocessor communication. Because of the

difficulties that arise when different processors try to

access the same memory at the same time, it is usually the

case that only coarse grained systems have shared memory and

local or distributed memory is used for fine grained

architectures.

On a shared memory system interprocessor communication is

not necessary since once a processor writes data into a

location in the global memory all other processors have access

to this data. The advantage of this type of design is that

ii



computer programming is simplified, however, accessing the

common global memory can take longer, because contention

problems can occur when several processors try to access the

shared memory simultaneously.

On the other hand with distributed memory systems, memory

contention problems do not exist, because each processor has

its own local memory to store data. However, for problems

where data must be shared between processors an interprocessor

communication protocol must be developed by the programmer and

excessive delays in communication can significantly degrade

the performance of the system. It is because of these memory

contention and communication problems that parallel processors

usually do not approach their theoretical problem solving

speed.

The purpose of this study was to develop a transient

finite element program for parallel computation on a

transputer system of processors. The transputer is a chip

level processor with local memory and four communication links

that can be used to connect transputers in a variety of

configurations. Two different models of transputers are

currently available. The INMOS T414 transputer has 2 MBytes

of local memory and floating point performance of 0.I MFLOPS

while the INMOS TS00 transputer has a floating point

performance of 1.5 MFLOPS. The INMOST414 transputer was used

for the problems in this study. The four transputer links can

simultaneously transmit data at a rate of i0 MBits per second.

12



The transputers are programmed using the OCCAM language c6)

which was specifically developed to facilitate parallel

programming and inter-processor communication.

One transputer, known as the root transputer, can

communicate with the host computer in this case an IBM PC. It

is also used to edit and compile programs and in addition it

distributes programs among the other transputers in the system

which are referred to as the network.

As stated earlier, each transputer has four communication

channels which allows it to be linked with other transputers.

This flexibility allows a programmer the choice of different

network configurations for instance: a torus, a hypercube, 2-D

mesh, a pipeline and a binary tree topology. Some of these

are sketched in Figure i. Some of the configurations may be

better than others for certain classes of problems. For the

problems of interest here, a two-dimensional grid

configuration was thought to be the most appropriate.

For this study, an explicit, finite-element program was

written to analyze two and three dimensional transient

problems. An explicit-integration algorithm was chosen since

no equation solving is necessary and different nodes or nodal

groups can be updated independently. To partition the problem

for parallel computation, the nodes of the finite-element mesh

are divided into groups and assigned to different processors.

This partitioning, however, should be done in a way such that

the amount of interprocessor communication is minimized.

13



a] pipeline

b] 2- D grid

!

,L

' I

c] binary tree

Figure 1. Transputer network topologies
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The. initial task of the root processor is to define the

problem data, define the information needed for interprocessor

communication, and transmit this data to the network

processors. The task of each of the network processors is to

update the accelerations, velocities and displacements of the

nodes in its group over a time step. It should be noted that

although the updates of the nodal groups are uncoupled, the

displacements of the nodes in other subdomains at the

preceding time must be known in order to compute the internal

forces. Therefore, after the new displacements in a subdomain

are calculated, they must be communicated to other processors

before the next update can proceed. To solve a problem most

efficiently and achieve the greatest speedup over a

sequential computer, the time used for interprocessor

communication should be minimized. A flow chart for this

program is given in Figure 2.

The problem parameters which are specified on the root

processor are the nodal coordinates, element connectivity, the

initial conditions M ° and _0, the time step, the number of time

steps and the data defining the material properties. Because

the program was written to be run on a 2-D grid processor

configuration, the processor connectivity is defined by

giving the number of rows and columns of processors. For

example, the grid in Fig. Ib has 3 rows and 4 columns. Data

specifying which nodes are assigned to which processors and

the limit of interprocessor communication, the maximum

15



ROOT PROCZSSOR SYSTEM PROCESSOR

Set problem definifJon parameters

x, node, v0, dO, A,t . num.time steo

Set processor connec_vit_
information

rows, Columns

I

Assign nodes to processors

node.assian

Sent Droc. conneclJvity info

rows. Columns

Determine communication red.ices

num.netgh.senC, num.neign.rec

nert.neiqh, rte,x,'tneiq h.re c,

sianal,in, siqn_l.out,
max._cKs

Send problem parameters

T

J _ [ Receive & send prop. _,.ConnecOv_ data

Determine Drooessor
numoer and direc_ons
to send & receive

information

_..] Receive and sencl
proolem parameters

t

? ?
Figure 2. Flow chart of the parallel finite

element program
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©

Rece=ve STOP signal

Store neeoed dam

Determine ano rearrange nooes

which need to be exchange with
ot_er orocessors

T
l Compute mass mat_x

LOOP

I=0 TO num.tJme.steo

NO

I Compute intemaJ force Imatrix

I Upclate L v__ & dfor processor nodes

Exchange noclal
clis_)lacements with

aooroonate Drocessors

Sena STO _ saonal

Figure 2. Cont.
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distance of neighbors that a processor can communicate with,

is also defined. The limit describes the maximum number of

steps which is required to perform the interprocessor

communication. In each step only the transputers which are

connected can exchange data; for example, in Figure ib,

transputers number 5 and 6 can exchange information in one

step but transputers number 4 & 6 in two steps.

The first task of the root processor is to calculate the

various matrices needed to describe the interprocessor

co_umunication. These matrices are determined by the structure

of the finite element mesh, the grouping of the nodes and the

size and shape of the processor grid. The matrix containing

information on the number of processors with which each

transputer has to exchange information is (hum.neigh.send,

num.neigh.rec) and the grid locations of these processors are

in the matrices (next.neiqh, next.neiqh.rec). Two other

matrices (siqnal.in and siqna!.out) contain information on

when and from which direction each transputer must send and

receive data. The root processor also calculates how many

communication steps are needed for each processor to transmit

data to its most remote neighbor (Figure 3). This gives an

estimate how well the mesh has been partitioned. For

instance, if one of the transputers needs many more steps than

the others to reach its most remote neighbor, the partitioning

of the mesh should be reconsidered.

As the root transputer transmits problem data, network

18



transputers receive this information, keep the needed data and

send the information further to other transputers. Depending

on the grid position of a transputer, it can receive

information from west or north direction, see Fig. 3, and send

it to east or south directions. The way in which data is

initially distributed among transputers is shown in Figure 4.

Before a network transputer starts the time integration

loop, it has to rearrange the problem data. Nodal

displacements which must be exchanged are grouped together in

increasing order according to the identification number of the

transputer that receives data. Grouping displacements in this

fashion ensures that nodes in the sending and in the receiving

transputers are rearranged in the same order.

After calculating mass matrices for each element the time

stepping is performed. First, the internal force matrix is

calculated then nodal accelerations, velocities and

displacements, respectively are updated. After each time

step, updated nodal displacements are exchanged between the

network processors.

19



North

a network

transputer

South

I.U

a] transputer output and input channels

ROOT

transputer

North

14,1

South

b] dependence of the outpu- direction on the pcsizion of the

receivin_ data transpumer

Figure 3. Determination of output direction
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Figure 4. Data distribution among transputers
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5.0 NUMERICAL EXAMPLES

Several numerical examples have been analyzed to evaluate

the efficiency of the parallel algorithm. Unfortunately,

since a large system of transputers was unavailable, the

previously discussed communication algorithm was implemented

on four T414 transputers connected in pipeline (Figure la)

were used. In these examples, the size and geometry of the

finite element mesh was varied to study the effects of

different amounts of interprocessor communication. Currently

the program uses linear triangular elements (Figure 5a) in

two-dimensions and 8 node hexahedrals (Figure 5b) in three-

dimensions.

5.i Three-dimensional Bar Model

The problem statement for this example is shown in Figure

6. One end of the bar was kept fixed while an initial

displacement was applied to the opposite end of the bar.

Figure 7 gives a plot of the displacement at the end of the

bar as a function of time that was computed using the central

difference algorithm.

To see how the amount of interprocessor communication

affects the solution time, in this example, the number of

nodes in the processor groups is varied while the number of

nodal displacements that must be exchanged between processors

is kept fixed. When the number of network transputers is

22
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a] using linear triangular elements

c

/

z_

/
• /

/
/

I
._ev

-,i

Y

/7-"

b] usinc 6 node he:.:a:nedral e!emen-s

Figure 5. Finite element model of the bar problem
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increased, a mesh of appropriate size is chosen to keep the

number of processor elements and the number of nodes exchanged

the same. The notation is used that nnodex, nnodey, nnodez

indicate the number of nodes in x,y and z direction

respectively and (nnodex) x (nnodey) x (nnodez) is the total

number of nodes in the problem. The different cases that were

considered for various number of processors are given in

Tables A-l, A-2 and A-3. The solution times for these cases

are given in Tables A-4 through A-12.

From an analysis of the measured solution times and of

the internal structure of the program it was possible to

obtain an approximate formula to calculate the execution time.

The total solution time is assumed to be composed of three

parts: computation time, communication time and preparation

time in the form

Tto t = Top + Tcm + Tprep

Tto t - total time

Tcp - computation time

Tcm - communication time

Tprep - preparation time

Tprep NeIC0 * + NelNupC I + kC 2 + kN_C 3 + Np.elC4 +

Np.eLN_C 5 + Np.et((N_+N_)/2)C6 +

*Values of constants C0..Cll are given in Table 4.
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Tcp --

Tom

where

k (Nnd-Nup) C 7

(Np.eLC 8 + N_Ce)*Nst _

(CI0 + NexC11)*Nstep

(5-2)

(5-3)

(5-4)

k - is the integer of the ratio (N_es/length);

data between transputers is sent in vectors of a

fixed size, the time of sending & receiving data

is proportional to k

length - the size of the vector sending data among

transputers

The constants in these formulas were obtained by using the

least square fit of the data and are given in Table 4. In the

cases of computation and communication, times the measured

values from Tables A-4 through A-12 were used. A different

approach was taken for the calculation of the preparation

time. To avoid solving large system of equations, the

procedure was divided into six parts and approximate formulas

were obtained for each part. In this case the computation was

greatly simplified since for each part only two constants have

to be calculated. The theoretical times obtain from above

formulas are compared to actual values in Tables A-4 through

A-12.

Several conclusions can be drawn from analysis of the

results. First, the communication time is very small compared

to the computation time and virtually can be neglected.

Because data has to be exchanged after each time step the
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Table 4.

Constants for calculation of the execution time

Constant Value [s ]

C0 1.287x10 "4

Ci 1.366x10 "5

C2 9.224x10"2

C3 1.462x10 "2

C4 2.170x10 "3

C5 1.749x10 "5

2.515x10 "5
C 6

C 7 6.623x10 "3

C8 I 9"8'BlxlO'2

C9 8.735x10 "4

C10 1.280x10 "_

C11 4.640xi0"5
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computation time in each step is determined by the processor

with the largest work load. Consequently, it is very

important to distribute the work load uniformly among network

transputers.

When assigning the work load to transputers it should be

taken into account that number of processor elements rather

than number of nodes to update determines the computation

time. This conclusion can be drawn from comparison of the

constants in equation (5-3). The constant corresponding to

Np.et (CB) is much larger that the one corresponding to Nup (C9).

To minimize the number of elements that must be stored by

more than one processor, the assigning of the nodes to the

processors should be done along the cross-section plane of the

mesh with the smallest number of nodes.

The preparation time can be significant and for a small

mesh running only a small number of time steps can even

surpass the advantage of shorter computation time. For a

given mesh and network of transputers, there exists a minimum

number of time steps for which running the program

concurrently is more efficient than sequential computation.

The above analysis shows _hat the total time depends

primarily, particularly for larger number of time steps, on

the number of elements assigned to each processor. The

computation time is determined by the transputer with the

largest number of elements, so it is important to assign an

equal number of elements to all transputers. A simple
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iterative algorithm was developed for nodal assignment that

gives a relatively balanced processor work load.

For example, in the simplest case of 2 transputers we

have the following relations

(Np.el)A = Act + CeL (5-5a)

(Np.el)B = Bet + CeL (5-5b)

Net = (Np.eL)A + (Np.el)B- Cel (5-5C)

(Np.el) A

(Np.el) B

Ael

SeL

Cel

total number of elements

assigned to transputer A

total number of elements

assigned to transputer B

elements assigned only to

transputer A

elements assigned only to

transputer B

common elements assigned to

both transputers

The goal is to achieve (Np.eL)A = (Np.et)8

possible, what occurs when Ael = BeL.

or as close as

The algorithm assigning nodes in this way is presented in

Figure 8. However, it should be noted that the results are

influenced by the manner in which the numbering of elements

was done. Figure 9 illustrates this for the case of 2-D grid.

A
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5.1.1 Analysis of the Results

Figure i0 shows the plot of the total solution time as a

function of the number of processors used in solving the cube

problem; the points were obtained based on the formula (5-1).

There are two reasons why the solution time does not decrease

linearly as the number of processors increases. First, the

data preparation time on the host computer depends on the size

of the local processor matrices, which do not decrease

proportianally to the number of processors, and also on the

global problem parameters which are constant. So that the

actual preparation time can increase with increasing numbers

of processors. Second, the number of elements assigned to each

transputer is not equal to the total number of elements

divided by number of processors. It is increased by the

number of elements which are shared by neighboring processors;

this number has a constant value. This value depends on the

shape of the structure being modelled. This dependence is

illustrated by Figure II; r represents the ratio A/Ac_ where

Acu _ - number of elements in the cross sectional

area of the cube which has the given number of

elements.

A - number of elements in the cross sectional

area of a parallelepiped which has the same

number elements.

The three possible shapes corresponding to different values of
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the coefficient r are sketched in Figure ii and Figure 12

represents the dependence of the total time on the shape of a

parallelepiped. Theoretically, the larger the ratio the

longer the total solution time. However, if r > i, then the

nodes have not been assigned to transputers along the shortest

side. Consequently, if decomposition and numbering of the

mesh has been done correctly the cube is the worst case. In

Figure 12 the total time is increasing almost linearly. This

results from the fact that, in this example, the computation

time plays the dominating role (relatively large Nst,p=100).

The computation time grows approximately linearly with Np.,t

because the influence of N_ is very small (see equation 5-3).

Since number of elements assigned to each transputer grows

linearly with r, the total time grows approximately linearly.

The results in Tables A-4 through A-12 also indicate that

the communication time (Tcm) is very small and can be

neglected. Then, the solution time can be divided into the

preparation time (Tprep) and the computation time (Top).

Preparation time is used to set up the problem data for

parallel computations and would be absent in a sequential

computation. Here, the transputer efficiency will be defined

as the ratio of ([Tcp],_/p)/Tto t. Since the transputer time is

composed of computation time and data manipulation time, this

value indicates what parts of the overall time is devoted to

calculations & data manipulation. The results obtained from

formula (5-1) are presented in Figure 13. In order to obtain
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equal values for local parameters; Np.,t, N_, N_, the shape of

the cross sectional area was kept unchanged, (nnodex) x

(nnodez) = 5 x 6, while the value of nnodey was adjusted to

give the required number of elements per processor. If T_ is

neglected, there are two additional times which occur in

parallel computations and are absent in sequential. First is

Tpr,p which does not depend on N,t _. Second is the part of Top

which requires duplicate computations over the elements

belonging to the division border (these elements are assigned

to two different transputers); this time is proportional to

N,t,p. Three possible cases are illustrated by Figure 13.

When Tprep is much larger than the additional computation time,

that occurs for small Nst,p and large meshes (Figure 13a),

processor efficiency decreases with num.of.elem per processor

since Tpr,p grows faster than Top. The second extreme takes

place when Tprep is small compared to additional computation

time; this is true for large Nst_ (Figure 13c). Because the

num.of.elem on the division border is kept constant, the

processor efficiency increases with num.of.elem per processor.

The third case occurs when both additional times have

comparable influence (Figure 13b).

5.1.2 Estimation of Optimal Number of System Processors

Another problem of interest is to determine the number of

transputers in the network that should be used to execute a

given problem in the shortest time. It should be noted that
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depending on the problem size and the number of time steps,

using the maximum number of processors may not yield the

shortest time. To determine the shortest solution time, the

following inequality needs to be analyzed

(Tto_)lpro c > Tpre p +Tcp (5-6)

Ttot)lpro c - total time

Tprep

Tcp

for sequential

computation

preparation time for parallel

computation

computation time for parallel

computation

3-dimensional

used to

For the bar

equations can be

num. nodes, needed and num. update, nodes

h = Nnodes/(ab)

Nup = (sab)

N_ = (s+l) (ab)

Np.et = s[ (a-l) (b-l) ]

where

problem,

calculate

the following

num.proc.elem,

(5-7a)

(5-7b)

(5-7c)

(5-Vd)

s = [((h-2)/p) +i] (5-7e)

p - number of processors

a, b, h - number of nodes along the sides of the

parallelepiped

After substitution into equation (5-6), we can obtain the

minimum number of processors which must be used to reduce the

total time below the total time for one processor. Data for
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few chosen cases are presented in Figure 14. There are two

factors which influence the value of the minimum number of

processors. First, the preparation time increases for smaller

numbers of processors. Second, the computation time decreases

inversely with the number of processors. The minimum number

of processors is the smallest value for which the decrease of

Topcompared to sequential computation is larger than Tpr,p. Of

course, this value is smaller for problems where Tcp plays

dominating role. This occurs in the case of problems with

large number of time steps because Tcp increases linearly with

N,_,p while Tprepremains unchanged, or when the assemble of the

stiffness matrix requires a relatively long time. Figure 14

shows that even for a very small value of N,t,p, the minimum

number of processors is the smallest possible, two, which

means that two or more processors will give a faster solution

than a sequential computation. The reason for this is because

for 8 node hexahedrals time for the computation of the

stiffness matrix is relatively large, so that even if only a

few elements are involved this time is greater than the

communication time. As was stated above, the minimum

num.of.proc is the smallest value for which decrease of Tcp is

larger than Tpr,p. Based on this, it can be explained why, for

small Nstep, its value is very large. If num.of.proc=2; Tprep ,

which does not depend on Nstep and decreases with num.of.proc,

can greatly exceed Tcp. When num.of.proc is increased, the

gain in Tcp in absolute value is relatively small, so large
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num.of. Rroc is required to reduce Tprep under this small value.

Equation (5-1) can be used to calculate the approximate

execution time. However, the local data such as the number of

update nodes, number of nodes needed, number of processor

elements are not known before the program is executed since

they are determined by the procedure performing the partition.

Good accuracy can be achieved when the procedure calculating

time is used along with the part of the program which performs

the decomposition of the mesh and supplies the required data.

In practice, however, the approximate execution time may be

needed before input data is prepared. If we suppose that the

structure has approximately parallelepiped shape, the local

parameters mentioned above can be estimated.

For a given problem with NeL , number of elements, and

Nn_es , number of nodes, Ttot can be estimated by one of the two

methods presented below. First, as was shown previously,

Figure Ii, the longest total time for a constant NeL occurs in

the case of a cube. We can assume that the structure is a

cube composed of number of elements equal to Net and then

calculate components needed to compute Ttot from equations (5-

7) and (5-1). In the second approach we can anticipate the

shape of the parallelepiped using both Net and Nnode s. The sides

of the parallelepiped can be obtained from the following

formulas

Nn_es = abh (5-8a)

Net=(a-l) (b-l) (h-l) (5-8b)
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or after eliminating h

(b2-b)a 2 + {Nn_es+ b[l-(Nno_es-NeL)]-b2)a + Nn_es(b-l)=0 (5-9)

Since we have one equation and two unknowns, we have to assume

the ratio a/b. For (a/b)=l the above equation reduces to

a _ - 2a 3 + [I-(N_es-NeL ) ]a 2 + 2N_,a - N_s = 0 (5-10)

Solving the equation

the equations (5-7)

total time.

taking the root 3,_-_es _ a > 0,and

and (5-1) can be used to estimate the

5.2 Turbine Blade

A problem involving the analysis of a turbine blade was

executed sequentially and on a two transputer network, with a

mesh of 1575 nodes and 1025 elements (Figure 15). It was

assumed that the bottom nodes of the blade are fixed while

initial displacements are applied to the top nodes. The

results together with the estimated times are grouped in the

Tables 5 and 6.

In Table 5 the sequential and parallel solutions are

compared. For num.time.step = i, the sequential solution is

faster than the concurrent one because the data manipulation

time exceeds the gain in the computation time resulting from

using two processors. It also should be noticed that with

growing num.time.step the ratio (Trot)2 proc/(Ttot) 1 proc becomes

smaller but never reaches 50%. This is so because more than

half of the elements are assigned to each processor and thus

46



1575 nodes

1025 eiements

3 DOFinode
Full base constraint

AIRFOIL

A Z

Figure 15.
The turbine blade finite element model

('7)

47



t_

0

0

0
I/l

e.

0

e,
0
IJl

0
0

21

v ,

w

• . _ _: ,_

48



|

,,;9



the total work load is larger than in the sequential

computation. Also, the time is increased by the preparation

time which is absent in sequential computation.

The measured times were compared with the calculated

times in Table 6; the calculation was carried out using the

two partitioning methods presented in the previous section.

First, an equal number of nodes were sequentially assigned to

each transputer, then the nodes were assigned in the manner

such that each transputer handles an equal number of elements.

As expected, in the second case the execution time is shorter;

a reduction of about 10% was achieved.

In both cases, the calculated times are smaller than the

measured times. This is because the shape of the turbine

blade does not exactly correspond to the assumed

parallelepiped model, and more nodes have to be exchanged

between processors than it is predicted by the cube model.

The element partition was made along the blade platform (see

Figure 15).

5.3 Two-dimensional Example

The program was modified slightly in order to analyze

two-dimensional problems more efficiently. The eight node

solid element was replaced by a linear displacement triangular

element which decreased the time of computation and assembly

of the stiffness matrix. Also, where appropriate, three
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dimensional vectors and matrices were replaced by two

dimensional versions. The program was used to analyze several

two-dimensional bar test problems (Table A-13) and the results

were presented in Tables A-14 through A-19.

In comparison with the three-dimensional case, the ratio

of communication time to computation time (T_/Tcp) for the

two-dimensional problems is much larger, Table 7. Both times,

Tcm and Tcp, are smaller for 2-D problems than for 3-D ones.

However, the decrease of the computation time is much larger

primarily because the calculation of the stiffness matrix is

significantly faster than for the 3-dimensional element.

The 2-D problem was also examined by Patrick Smolinski (8)

on TS00 transputer (see page 12). Some results of his study

are presented in Tables A-20 and A-21.

Comparing these results with those for T414 transputer

(Table A-13 through A-19), we see that the total computation

time is smaller for the TS00 transputer. This is due to the

higher performances of the TS00 transputer (see page 12).

However, we cannot calculate the ratio of the communication to

the calculation time, since the communication time has not

been measured for these problems.
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Table 7.

Comparison of the ratio of the communication time per

node to the computation time per element

CASE

r ....

3-D

(Tcm) per.node

(Tcp) p_r.etem

1.2%
r,.

2-D 4.13 %
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6.0 CONCLUSIONS

The results of this study indicate that the execution

time of a finite element program can be considerably reduced

by parallel computation using a relatively inexpensive

transputer system. However, a price is paid since a larger

and more complex computer program is required. In addition to

the part of the computer program performing the actual

calculations, routines performing communication and

decomposition of the mesh have to be written.

For cases examined here, two and three-dimensional

problems, the communication time, the time of exchanging

displacements after each time step, was very small. However,

if communication between more remote transputers is required

this time will increase. In addition, when the time for

assembling the stiffness matrix is relatively small and the

number of exchanged nodes is large, the communication time has

to be taken into account. For the problems solved in this

study, the preparation time, the time of receiving and

rearranging data, is more important. This time depends on the

size of the structure and number _f transputers used but not

on the number of time steps. Consequently, for large number

of time steps it becomes small in comparison to the

computation time.

The total execution time depends on the size of the mesh

and local parameters such as number of nodes and elements
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assigned to each transputer. The computation time depends

mostly on number of elements and other local parameters that

are related to this value. For problems that require a large

number of time steps for the solution, the computation time is

usually much larger than other components of the total time.

Because this is usually the case when a transputer systems

would be used, it means that partitioning of the mesh can be

done considering only the number of elements. For this reason

perhaps the most important factor in minimizing the solution

time is to assign an equal work load to each transputer since

the total time is primarily governed by the transputer with

the largest work load.

In most cases the parallel computation proves to be

faster than the sequential one. The only cases when the

sequential computation is faster occur for small number of

time steps and are of no practical importance since most

engineering problems require a significant number of time

steps.

In the future it would be desirable to write a program

which checks the order of element numbering in the

connectivity matrix and if necessary rearrange it. This would

optimize the results of the program performing the

decomposition of a mesh, see Figure 7.

In this study, the program was executed on the only

available transputer configuration, the pipeline (Figure la).

The correctness of the program was checked by using a special
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feature of the OCCAM language which allows to simulate an

arbitrary transputer network while a program is executed

sequentially. It would be interesting to run this program on

a large grid of TS00 processors to study the efficiency of the

algorithm and to determine the speed-up that could be obtained

with these much faster processors.
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